

Scapy

● What is Scapy
● Why use Scapy?
● Important concepts to keep in mind
● Crafting your first packet
● Sending and Receiving Packets/Frames
● Basic examples and dealing with the OS's

TCP/IP stack using iptables
● Quick discussion of the Super Socket

What is Scapy

● A Python framework used for crafting and
transmitting packets.

● Capable of Sniffing or replaying packets for
troubleshooting or fuzzing network services.

● Can be used as the interactive Python
interpreter or the framework can be imported as
a python module and used for further coding

● Everything is an object!

Why use Scapy?

● Blue Team
– Test IDS/IPS

– Test Firewall

– Learn more about TCP/IP (down and dirty)

– Application response(Fuzzing)

● Red Team
– Fire teh lazorz (DOS/DDOS)

– More Fuzzing

– Penetration Testing

Important Concepts
● Everything is an Object – treat it as such

– IP(), TCP(), UDP(), ICMP()

● Important commands to remember:
– help() - displays help

– ls() - displays packet classes

– lsc() - displays commands available to you

● When assigning Field Values(either works)
– ip=IP(src=”1.2.3.4”, dst=”google.com”)

– ip=IP()

– ip.src=”1.2.3.4”

– ip.dst=”google.com”

Important Concepts Continued
● Displaying Values of Variables

– ls(ip) – shows what you have set and default vaules

– ip – shows only what you have set

– ip.show() - omits variable classes and default
values

● Assembling the Network Layers
– packet=IP(dst=”1.2.3.4”)/TCP(flags=”S”,dport=443)

– frame=Ether(type=0x8100)/Dot1Q(vlan=99)/packet

● Payload attribute
– Will Display all the layers after the initial

Crafting your first packet
● ICMP echo(type 8) request to dst –

192.168.1.103
– send(IP(dst=”192.168.1.103”)/ICMP(type=8))

● Using Variables
– packet=IP(dst=”192.168.1.103”)/ICMP(type=8)

– send(packet)

● Inoking Scapy into a python script
– #! /usr/bin/python

from scapy.all import *
i=IP(dst=”192.168.1.1”)
t=TCP(dport=80, flags=”S”)
packet = i/t
send(packet)

Sending and Receiving
● Frames (Layer 2)

– sendp() - layer 2 sending

– srp() - send and receive on Layer 2

– srp1() - send and receive a single response

● Packets (Layer 3)
– send() - layer 3 sending

– sr() - layer 3 send and receive

– sr1() - send and receive a single response

Basic Examples

● Start a TCP connection
– sr1(IP(dst=”192.168.1.1”)/TCP(flags=”S”,

dport=80,seq=100))

● Send to Multiple IPs and Listen for responses
– sr(IP(dst=[”192.168.1.1”, “192.168.1.2”])/ICMP())

● Send to Multiple ports and see responses
– sr(IP(dst=”192.168.1.1”)/TCP(dport=[80, 443,

22,445]))

– Then to view them: ans,unans=_

– ans.summary()

More useful features
● Fuzzing Values

– send(IP(dst=”192.168.1.1”)/fuzz(ICMP(code=0,
seq=0, id=0)), loop=1)

● This will fuzz all values what are not assigned and stay in
a loop until you Ctrl+C out of it.

● conf – allows you to modify default values and
change scapy configurations
– Conf.route – shows the routing table scapy will use

● Wireshark Interface
– wireshark(packet) – will launch a wireshark

interface showing the packet you crafted

Cooked Sockets / Raw Sockets
and IP Tables

● Cooked sockets uses Native TCP/IP Stack
– Kernel builds packet

– Assigns correct IP/UDP/TCP header values

– You supply the payload

● Raw Sockets circumvents Native TCP/IP Stack
– You build packet

– You assign header values

– You supply the payload

IP Tables helps us

● Block TCP Outbound Resets
– iptables -A OUTPUT -p tcp –tcp-flags RST RST -s

192.168.1.1 -d 192.168.1.2 –destination-port 80 -j
DROP

● Block UDP Outbound ICMP port unreachables
– iptables -A OUTPUT -s 192.168.1.1 -d 192.168.1.2

-p ICMP –icmp-type port-unreachable

● Call IPTables in your python script
– Import subprocess

cmd = [iptables rules]
subprocess.call(cmd, shell=False)

A look at the Three-way Hand
Shake

#!/usr/bin/python

from scapy.all import *

ip=IP(src="192.168.1.1", dst="192.168.1.2")

SYN=TCP(sport=1030, dport=80, flags="S",
seq=10)

SYNACK=TCP(sr1(ip/SYN)

my_ack =SYNACK.seq + 1

ACK=TCP(sport=1030, dport=80, flags="A",
seq=11, ack=my_ack)

send(ip/ACK)

data = "GET / HTTP/1.1"

PUSH=TCP(sport=1080, dport=80, flags="PA",
seq=11, ack=my_ack)

send(ip/PUSH/data)

Super Socket
● Network socket is a function that opens, reads,

writes, and closes an instance of network
communications

● Using both Scapy “sniff” to read DNS query and
“send” to write new spoofed responses requires
the use of two separate sockets
– This method takes to longer and will never “beat”

the DNS server

● Scapy uses a “super-socket” which takes care
of both reading and writing with a single socket
– Less time and can beat the server

In closing

● Scapy is a very useful tool for:
– Gaining an in depth knowledge of the TCP/IP stack

– Great tool for security/network analysts and testers

● Great features:
– Cross Platform

– Easily read, write, craft packets on the fly

– Easily incorporate Scapy into an existing python
script

– Replay pcaps back onto the network

Sources

● SANS Security Course: Power Packet Crafting
with Scapy

● Research done on Wikipedia

http://webstersprodigy.net/2012/07/06/some-practical-arp-poison-attacks-with-scapy-
iptables-and-burp/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

